Surfaces with parallel mean curvature vector
نویسندگان
چکیده
منابع مشابه
Submanifolds with Parallel Mean Curvature Vector in Pinched Riemannian Manifolds
In this paper, we prove a generalized integral inequality for submanifolds with parallel mean curvature vector in an arbitrary Riemannian manifold, and from which we obtain a pinching theorem for compact oriented submanifolds with parallel mean curvature vector in a complete simply connected pinched Riemannian manifold, which generalizes the results obtained by Alencar-do Carmo and Hong-Wei Xu.
متن کاملSurfaces with maximal constant mean curvature
In this note we consider asymptotically flat manifolds with non-negative scalar curvature and an inner boundary which is an outermost minimal surface. We show that there exists an upper bound on the mean curvature of a constant mean curvature surface homologous to a subset of the interior boundary components. This bound allows us to find a maximizer for the constant mean curvature of a surface ...
متن کاملConstant mean curvature surfaces with cylindrical ends
R. Schoen has asked whether the sphere and the cylinder are the only complete (almost) embedded constant mean curvature surfaces with finite absolute total curvature. We propose an infinite family of such surfaces. The existence of examples of this kind is supported by results of computer experiments we carried out using an algorithm developed by Oberknapp and Polthier. The cylinder of radius 1...
متن کاملTimelike Surfaces with Harmonic Inverse Mean Curvature
In classical differential geometry, surfaces of constant mean curvature (CMC surfaces) have been studied extensively [1]. As a generalization of CMC surfaces, Bobenko [2] introduced the notion of surface with harmonic inverse mean curvature (HIMC surface). He showed that HIMC surfaces admit Lax representation with variable spectral parameter. In [5], Bobenko, Eitner and Kitaev showed that the G...
متن کاملTimelike Constant Mean Curvature Surfaces with Singularities
We use integrable systems techniques to study the singularities of timelike non-minimal constant mean curvature (CMC) surfaces in the LorentzMinkowski 3-space. The singularities arise at the boundary of the Birkhoff big cell of the loop group involved. We examine the behaviour of the surfaces at the big cell boundary, generalize the definition of CMC surfaces to include those with finite, gener...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the American Mathematical Society
سال: 1972
ISSN: 0002-9904
DOI: 10.1090/s0002-9904-1972-12994-x